Necrostatin-1 protects C2C12 myotubes from CoCl2-induced hypoxia
نویسندگان
چکیده
Necrostatin-1 (Nec-1) is a selective and potent allosteric inhibitor of necroptosis by specifically inhibiting the activity of receptor‑interacting protein (RIP) 1 kinase. The aim of the present study was to determine the effect of Nec‑1 on an anoxia model comprising mouse skeletal C2C12 myotubes. In the present study, a hypoxic mimetic reagent, cobalt chloride (CoCl2), was used to induce hypoxia in C2C12 myotubes. The cytotoxic effects of CoCl2‑induced hypoxia were determined by a Cell Counting kit‑8 assay and flow cytometry. Transmission electron microscopy (TEM) was used to characterize the morphological characteristics of dead cells at the ultrastructural level. To clarify the signaling pathways in CoCl2‑mediated cell death, the expression levels of RIP1, RIP3, extracellular signal‑regulated kinase (ERK)1/2, hypoxia‑inducible factor (HIF)‑1α and B cell lymphoma‑2 adenovirus E1B 19‑kDa interacting protein 3 (BNIP3) were investigated by western blotting. Oxidative stress was determined using 2',7'‑dichlorofluorescin diacetate to measure intracellular reactive oxygen species (ROS) and the fluorescent dye JC‑1 was used to measure mitochondrial membrane potential (Δψm). The results showed that the ratios of apoptotic and necrotic C2C12 cells were increased following CoCl2 treatment, typical necroptotic morphological characteristics were able to observe by TEM, whereas Nec‑1 exhibited a protective effect against CoCl2‑induced oxidative stress. Treatment with Nec‑1 significantly decreased the levels of RIP1, p‑ERK1/2, HIF‑1α, BNIP3 and ROS induced by CoCl2, and promoted C2C12 differentiation. Nec‑1 reversed the CoCl2‑induced decrease in mitochondrial membrane potential. Together, these findings suggested that Nec‑1 protected C2C12 myotubes under conditions of CoCl2-induced hypoxia.
منابع مشابه
Effects of Cobalt Chloride, a Hypoxia-Mimetic Agent, on Autophagy and Atrophy in Skeletal C2C12 Myotubes
BACKGROUND Hypoxia-induced autophagy and muscle wasting occur in several environmental and pathological conditions. However, the molecular mechanisms underlying the effects of the hypoxia-mimetic agent CoCl2 on autophagy and muscle atrophy are still unclear. METHODS C2C12 myotubes were exposed to increasing concentrations of CoCl2 for 24 hours. Quantitative RT-PCR, Western blotting, and trans...
متن کاملIGF-1 Attenuates Hypoxia-Induced Atrophy but Inhibits Myoglobin Expression in C2C12 Skeletal Muscle Myotubes
Chronic hypoxia is associated with muscle wasting and decreased oxidative capacity. By contrast, training under hypoxia may enhance hypertrophy and increase oxidative capacity as well as oxygen transport to the mitochondria, by increasing myoglobin (Mb) expression. The latter may be a feasible strategy to prevent atrophy under hypoxia and enhance an eventual hypertrophic response to anabolic st...
متن کاملProlyl hydroxylase 2 (PHD2) inhibition protects human renal epithelial cells and mice kidney from hypoxia injury
Prolyl hydroxylase domain protein 2 (PHD2) is a key oxygen sensor, setting low steady-state level of hypoxia-inducible factor-α (HIF-α). Here, we showed that treatment of cobalt chloride (CoCl2), a hypoxia mimic, in HK-2 tubular epithelial cells induced PHD2 and HIF-1/2α expression as well as cell apoptosis and autophagy activation. Three methyladenine (3-MA), the autophagy inhibitor, blocked a...
متن کاملGinsenoside Rg-1 Protects Retinal Pigment Epithelium (RPE) Cells from Cobalt Chloride (CoCl2) and Hypoxia Assaults
Severe retinal ischemia causes persistent visual impairments in eye diseases. Retinal pigment epithelium (RPE) cells are located near the choroidal capillaries, and are easily affected by ischemic or hypoxia. Ginsenoside Rg-1 has shown significant neuroprotective effects. This study was performed to test the cytoprotective effect of ginsenoside Rg-1 in RPE cells against hypoxia and cobalt chlor...
متن کاملتأثیر عصاره زردچوبه بر جابجایی ناقل غشایی گلوکز، ایزوتایپ IV (Glut4) در سلولهای تمایز یافته C2C12
Introduction: Curcumin is a major phenolic compound of Curcuma longa, which has long been used in traditional Indian medicine. Recently, curcumin has been reported to have antihyperglycemic activity in animal models. However, the molecular basis of this action has not been adequatedly described. In the present study the antihyperglycemic effect of curcumin was examined using C2C12 myoblast cell...
متن کامل